71 research outputs found

    A Homological Approach to Belief Propagation and Bethe Approximations

    Full text link
    We introduce a differential complex of local observables given a decomposition of a global set of random variables into subsets. Its boundary operator allows us to define a transport equation equivalent to Belief Propagation. This definition reveals a set of conserved quantities under Belief Propagation and gives new insight on the relationship of its equilibria with the critical points of Bethe free energy.Comment: 14 pages, submitted for the 2019 Geometric Science of Information colloquiu

    The Cluster Variation Method for Efficient Linkage Analysis on Extended Pedigrees

    Get PDF
    BACKGROUND: Computing exact multipoint LOD scores for extended pedigrees rapidly becomes infeasible as the number of markers and untyped individuals increase. When markers are excluded from the computation, significant power may be lost. Therefore accurate approximate methods which take into account all markers are desirable. METHODS: We present a novel method for efficient estimation of LOD scores on extended pedigrees. Our approach is based on the Cluster Variation Method, which deterministically estimates likelihoods by performing exact computations on tractable subsets of variables (clusters) of a Bayesian network. First a distribution over inheritances on the marker loci is approximated with the Cluster Variation Method. Then this distribution is used to estimate the LOD score for each location of the trait locus. RESULTS: First we demonstrate that significant power may be lost if markers are ignored in the multi-point analysis. On a set of pedigrees where exact computation is possible we compare the estimates of the LOD scores obtained with our method to the exact LOD scores. Secondly, we compare our method to a state of the art MCMC sampler. When both methods are given equal computation time, our method is more efficient. Finally, we show that CVM scales to large problem instances. CONCLUSION: We conclude that the Cluster Variation Method is as accurate as MCMC and generally is more efficient. Our method is a promising alternative to approaches based on MCMC sampling

    Cycle-based Cluster Variational Method for Direct and Inverse Inference

    Get PDF
    We elaborate on the idea that loop corrections to belief propagation could be dealt with in a systematic way on pairwise Markov random fields, by using the elements of a cycle basis to define region in a generalized belief propagation setting. The region graph is specified in such a way as to avoid dual loops as much as possible, by discarding redundant Lagrange multipliers, in order to facilitate the convergence, while avoiding instabilities associated to minimal factor graph construction. We end up with a two-level algorithm, where a belief propagation algorithm is run alternatively at the level of each cycle and at the inter-region level. The inverse problem of finding the couplings of a Markov random field from empirical covariances can be addressed region wise. It turns out that this can be done efficiently in particular in the Ising context, where fixed point equations can be derived along with a one-parameter log likelihood function to minimize. Numerical experiments confirm the effectiveness of these considerations both for the direct and inverse MRF inference.Comment: 47 pages, 16 figure

    A survey on independence-based Markov networks learning

    Full text link
    This work reports the most relevant technical aspects in the problem of learning the \emph{Markov network structure} from data. Such problem has become increasingly important in machine learning, and many other application fields of machine learning. Markov networks, together with Bayesian networks, are probabilistic graphical models, a widely used formalism for handling probability distributions in intelligent systems. Learning graphical models from data have been extensively applied for the case of Bayesian networks, but for Markov networks learning it is not tractable in practice. However, this situation is changing with time, given the exponential growth of computers capacity, the plethora of available digital data, and the researching on new learning technologies. This work stresses on a technology called independence-based learning, which allows the learning of the independence structure of those networks from data in an efficient and sound manner, whenever the dataset is sufficiently large, and data is a representative sampling of the target distribution. In the analysis of such technology, this work surveys the current state-of-the-art algorithms for learning Markov networks structure, discussing its current limitations, and proposing a series of open problems where future works may produce some advances in the area in terms of quality and efficiency. The paper concludes by opening a discussion about how to develop a general formalism for improving the quality of the structures learned, when data is scarce.Comment: 35 pages, 1 figur

    Residents' perceptions of a night float system

    Get PDF
    Background. A Night Float (NF) system has been implemented by many institutions to address increasing concerns about residents' work hours. The purpose of our study was to examine the perceptions of residents towards a NF system. Methods. A 115-item questionnaire was developed to assess residents' perceptions of the NF rotation as compared with a regular call month. The categories included patient care, education, medical errors, and overall satisfaction. Internal Medicine housestaff (post-graduate years 1-3) from three hospital settings at the University of Pittsburgh completed the questionnaire. Results. The response rate was 90% (n = 149). Of these, 74 had completed the NF rotation. The housestaff felt that the quality of patient care was improved because of NF (41% agreed and 18% disagreed). A majority also felt that better care was provided by a rested physician in spite of being less familiar with the patient (46% agreed and 21% disagreed). Most felt that there was less emphasis on education (65%) and more emphasis on service (52%) during NF. Overall, the residents felt more rested during their call months (83%) and strongly supported the 80-hour workweek requirement (77%). Conclusion. Housestaff felt that the overall quality of patient care was improved by a NF system. The perceived improved quality of care by a rested physician coupled with a perceived decrease in the emphasis on education may have significant implications in housestaff training. © 2009 Jasti et al; licensee BioMed Central Ltd

    Prevention and Therapy of Hepatocellular Carcinoma by Vaccination with TM4SF5 Epitope-CpG-DNA-Liposome Complex without Carriers

    Get PDF
    Although peptide vaccines have been actively studied in various animal models, their efficacy in treatment is limited. To improve the efficacy of peptide vaccines, we previously formulated an efficacious peptide vaccine without carriers using the natural phosphodiester bond CpG-DNA and a special liposome complex (Lipoplex(O)). Here, we show that immunization of mice with a complex consisting of peptide and Lipoplex(O) without carriers significantly induces peptide-specific IgG2a production in a CD4+ cells- and Th1 differentiation-dependent manner. The transmembrane 4 superfamily member 5 protein (TM4SF5) has gained attention as a target for hepatocellular carcinoma (HCC) therapy because it induces uncontrolled growth of human HCC cells via the loss of contact inhibition. Monoclonal antibodies specific to an epitope of human TM4SF5 (hTM4SF5R2-3) can recognize native mouse TM4SF5 and induce functional effects on mouse cancer cells. Pre-immunization with a complex of the hTM4SF5R2-3 epitope and Lipoplex(O) had prophylactic effects against tumor formation by HCC cells implanted in an mouse tumor model. Furthermore, therapeutic effects were revealed regarding the growth of HCC when the vaccine was injected into mice after tumor formation. These results suggest that our improved peptide vaccine technology provides a novel prophylaxis measure as well as therapy for HCC patients with TM4SF5-positive tumors

    Robust, Integrated Computational Control of NMR Experiments to Achieve Optimal Assignment by ADAPT-NMR

    Get PDF
    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) represents a groundbreaking prototype for automated protein structure determination by nuclear magnetic resonance (NMR) spectroscopy. With a [13C,15N]-labeled protein sample loaded into the NMR spectrometer, ADAPT-NMR delivers complete backbone resonance assignments and secondary structure in an optimal fashion without human intervention. ADAPT-NMR achieves this by implementing a strategy in which the goal of optimal assignment in each step determines the subsequent step by analyzing the current sum of available data. ADAPT-NMR is the first iterative and fully automated approach designed specifically for the optimal assignment of proteins with fast data collection as a byproduct of this goal. ADAPT-NMR evaluates the current spectral information, and uses a goal-directed objective function to select the optimal next data collection step(s) and then directs the NMR spectrometer to collect the selected data set. ADAPT-NMR extracts peak positions from the newly collected data and uses this information in updating the analysis resonance assignments and secondary structure. The goal-directed objective function then defines the next data collection step. The procedure continues until the collected data support comprehensive peak identification, resonance assignments at the desired level of completeness, and protein secondary structure. We present test cases in which ADAPT-NMR achieved results in two days or less that would have taken two months or more by manual approaches

    Identification of a Dual-Specific T Cell Epitope of the Hemagglutinin Antigen of an H5 Avian Influenza Virus in Chickens

    Get PDF
    Avian influenza viruses (AIV) of the H5N1 subtype have caused morbidity and mortality in humans. Although some migratory birds constitute the natural reservoir for this virus, chickens may play a role in transmission of the virus to humans. Despite the importance of avian species in transmission of AIV H5N1 to humans, very little is known about host immune system interactions with this virus in these species. The objective of the present study was to identify putative T cell epitopes of the hemagglutinin (HA) antigen of an H5 AIV in chickens. Using an overlapping peptide library covering the HA protein, we identified a 15-mer peptide, H5246–260, within the HA1 domain which induced activation of T cells in chickens immunized against the HA antigen of an H5 virus. Furthermore, H5246–260 epitope was found to be presented by both major histocompatibility complex (MHC) class I and II molecules, leading to activation of CD4+ and CD8+ T cell subsets, marked by proliferation and expression of interferon (IFN)-γ by both of these cell subsets as well as the expression of granzyme A by CD8+ T cells. This is the first report of a T cell epitope of AIV recognized by chicken T cells. Furthermore, this study extends the previous finding of the existence of dual-specific epitopes in other species to chickens. Taken together, these results elucidate some of the mechanisms of immune response to AIV in chickens and provide a platform for creation of rational vaccines against AIV in this species

    Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance.</p> <p>Results</p> <p>Residue pair scoring functions for fixed backbone protein design were derived using only backbone geometry. Unlike previous studies that used spherical harmonics to fit 2D angular distributions, Gaussian Mixture Models were used to fit the full 3D (position only) and 6D (position and orientation) distributions of residue pairs. The performance of the 1D (residue separation only), 3D, and 6D scoring functions were compared by their ability to identify correct threading solutions for a non-redundant benchmark set of protein backbone structures. The threading accuracy was found to steadily increase with increasing dimension, with the 6D scoring function achieving the highest accuracy. Furthermore, the 3D and 6D scoring functions were shown to outperform side chain-dependent empirical potentials from three other studies. Next, two computational methods that take advantage of the speed and pairwise form of these new backbone-only scoring functions were investigated. The first is a procedure that exploits available sequence data by averaging scores over threading solutions for homologs. This was evaluated by applying it to the challenging problem of identifying interacting transmembrane alpha-helices and found to further improve prediction accuracy. The second is a protein design method for determining the optimal sequence for a backbone structure by applying Belief Propagation optimization using the 6D scoring functions. The sensitivity of this method to backbone structure perturbations was compared with that of fixed-backbone all-atom modeling by determining the similarities between optimal sequences for two different backbone structures within the same protein family. The results showed that the design method using 6D scoring functions was more robust to small variations in backbone structure than the all-atom design method.</p> <p>Conclusions</p> <p>Backbone-only residue pair scoring functions that account for all six relative degrees of freedom are the most accurate and including the scores of homologs further improves the accuracy in threading applications. The 6D scoring function outperformed several side chain-dependent potentials while avoiding time-consuming and error prone side chain structure prediction. These scoring functions are particularly useful as an initial filter in protein design problems before applying all-atom modeling.</p
    • …
    corecore